讲座主题:Flow polynomials of a signed graph
专家姓名:钱建国
工作单位:厦门大学
讲座时间:2018年10月15日14:30
讲座地点:数学院小会议室
主办单位:麻豆视传媒app官方数学与信息科学学院
内容摘要:
For a signed graphGand non-negative integerd, it was shown that there exists a polynomialFd(G,x) such that the number of the nowhere-zero Γ-flows inGequalsFd(G,x) evaluated atkfor every Abelian group Γ of orderkwith
, where (Γ) is the largest integerdfor which Γ has a subgroup isomorphic to
. We define a class of particular directed circuits inG, namely the fundamental directed circuits, and show that all Γ-flows (not necessarily nowhere-zero) inGcan be generated by these circuits. It turns out that all Γ-flows inGcan be evenly classified into 2(Γ)-classes specified by the elements of order 2 in Γ, each class of which consists of the same number of flows depending only on the order of Γ. Using an extension of Whitney’s broken circuit theory we give a combinatorial interpretation of the coefficients inFd(G,x) ford= 0, in terms of the broken bonds. Finally, we show that the sets of edges in a signed graph that contain no broken bond form a homogeneous simplicial complex.
主讲人介绍:
钱建国,厦门大学教授,博士生导师,美国数学会《数学评论》评论员,中国数学会组合数学与图论学会理事,福建数学会理事,福建省组合数学与图论学会常务理事。于1998年获得四川大学理学博士学位,先后到德国Bielefeld大学和台湾大学进行学术交流和访问。在图论组合领域顶级期刊《Journal of Combinatorial Theory, Series B》、《Journal of Combinatorial Theory, Series A》等杂志发表论文50余篇。主持和承担多项国家自然科学基金和省自然科学基金项目,包括国家自然科学基金重点项目一项。