麻豆视传媒app官方

学术预告 首页  >  学术科研  >  学术预告  >  正文

“庆祝建校四十年”系列学术活动之三元名家论坛:Advanced Numerical Methodologies for Fluid-Structure Interaction (FSI) Problems
作者:     供图:     供图:     日期:2024-06-14     来源:    

讲座主题:Advanced Numerical Methodologies for Fluid-Structure Interaction (FSI) Problems

专家姓名:孙澎涛

工作单位:美国内华达大学

讲座时间:2024年06月28日10:00-11:30

讲座地点:数学与信息科学学院341

主办单位:麻豆视传媒app官方数学与信息科学学院

内容摘要:

In this talk, I will present my resent research work on fluid-structure interaction (FSI) problems. The interaction of a flexible structure with a flowing fluid in which it is submersed or by which it is surrounded gives rise to a rich variety of physical phenomena with applications in many fields of engineering. Thus, finding accurate, efficient and robust ways to model and simulate both fluid and structure that are dynamically coupled together through moving interfaces has been always crucial to understand the phenomena of FSI. There are currently several major approaches for solving FSI problems that are classified by either the numerical treatment on interface conditions or the mesh conformity across moving interfaces. In my talk, I will briefly present four advanced numerical methodologies developed and analyzed in my research work of numerical FSI: (1) body-fitted mesh method; (2) body-unfitted mesh method; (3) meshfree/deep neural network method; and (4) reduced order modeling method, where the monolithic approach is adopted for each technique to realistically implement the dynamic coupling between fluid and structure. In addition, numerical experiments of substantial FSI problems ranging from hydrodynamics (physics) to hemodynamics (physiology) will also be shown in this talk to illustrate that the presented well developed numerical methodologies can produce high-fidelity numerical results for realistic FSI problems in anefficient and accurate fashion.

主讲人介绍:

孙澎涛,教授、博士生导师。现为美国内华达大学数学科学系终身教授,于1997年获得中国科学院博士学位,2013年被内华达大学提职为副教授(终身教职),2016年被授予美国内华达大学理学院杰出研究奖。在2007年入职美国内华达大学之前,曾先后在中国科学院、香港理工大学、美国宾夕法尼亚州立大学、加拿大西蒙弗雷泽大学担任博士后、副研究员、助理教授等职位。在数学应用的多个领域有建树,发表论文90余篇,2008年以来的研究课题连续被美国国家自然科学基金(狈厂贵)和内华达大学的教授研究奖励基金所资助。主要研究方向为偏微分方程的数值解法和科学与工程计算,在固体力学、流体力学、流固耦合、燃料电池、带电流体等领域的有限元方法、有限体积法。