麻豆视传媒app官方

学术预告 首页  >  学术科研  >  学术预告  >  正文

学术报告-The PML method for time-domain electromagnetic scattering problems
作者:     供图:     供图:     日期:2021-10-25     来源:    

讲座主题:The PML method for time-domain electromagnetic scattering problems

专家姓名:魏昌坤

工作单位:首尔国立大学

讲座时间:2021年10月26日 18:00-19:00

讲座地点:腾讯会议:757375919

主办单位:麻豆视传媒app官方数学与信息科学学院

内容摘要:

In this talk, a perfectly matched layer (PML) method is introduced to solve the 3D time-domain electromagnetic scattering problems. The PML problem is defined in a spherical layer and derived by using the Laplace transform and the real coordinate stretching in the transformed domain. The well-posedness and the stability estimate of the PML problem are first proved by using the Laplace transform and the energy method. The exponential convergence of the PML method is then established in terms of the thickness of the layer and the PML absorbing parameter. As far as we know, this is the first convergence result for the time-domain PML method for the three-dimensional Maxwell equations. Our proof is mainly based on the stability estimates of solutions of the truncated PML problem and the exponential decay estimates of the stretched dyadic Green's function for the Maxwell equations in the free space. This talk is based on a joint work with Prof. Jiaqing Yang and Prof. Bo Zhang.

主讲人介绍:

魏昌坤,首尔国立大学博士后。主要研究领域为散射与反散射的数学理论与计算,在SIAM J. Numer. Anal.、Sci. China-Math.、ESAIM-Math. Model. Numer. Anal等杂志发表多篇学术论文。